
VEGS: View Extrapolation of Urban Scenes in
3D Gaussian Splatting using Learned Priors

Sungwon Hwang1* , Min-Jung Kim1* , Taewoong Kang1 ,
Jayeon Kang2 , and Jaegul Choo1

1KAIST 2Ghent University
{shwang.14, emjay73, keh0t0, jchoo}@kaist.ac.kr,

jayeon.kang@ghent.ac.kr

Abstract. Neural rendering-based urban scene reconstruction methods
commonly rely on images collected from driving vehicles with cameras
facing and moving forward. Although these methods can successfully
synthesize from views similar to training camera trajectory, directing
the novel view outside the training camera distribution does not guaran-
tee on-par performance. In this paper, we tackle the Extrapolated View
Synthesis (EVS) problem by evaluating the reconstructions on views
such as looking left, right or downwards with respect to training camera
distributions. To improve rendering quality for EVS, we initialize our
model by constructing dense LiDAR map, and propose to leverage prior
scene knowledge such as surface normal estimator and large-scale diffu-
sion model. Qualitative and quantitative comparisons demonstrate the
effectiveness of our methods on EVS. To the best of our knowledge, we
are the first to address the EVS problem in urban scene reconstruction.
Link to our project page: https://vegs3d.github.io/.

Keywords: Neural Rendering · Urban Scene Reconstruction · Extrap-
olated View Synthesis (EVS)

1 Introduction

Advancements in neural implicit representations and their rendering methods
such as NeRF [22] have enabled accurate, high-fidelity reconstruction of 3D
scene and novel view synthesis [3–5,23]. However, these methods assume certain
conditions such as staticity of scene, or dense and diversely distributed training
images for accurate scene reconstruction. To handle non-static scenes, a line of
works [26, 27, 29] define canonical space and temporal latent vectors to encode
per-frame deformation, or learn to separate transient objects via space uncer-
tainty modeling [21, 35]. To relax the dense training set requirements, various
methods have been proposed to train NeRFs given a few sparsely distributed
images [16, 24, 45, 46]. However, these works mainly focus on the small num-
ber of training cameras rather than their pose distribution, which can also be
problematic when it is biased toward a certain location or viewpoint.

* Authors contributed equally to this work.

https://orcid.org/0000-0001-6688-3967
https://orcid.org/0000-0003-3799-8225
https://orcid.org/0009-0001-3985-8384
https://orcid.org/0009-0006-5653-0571
https://orcid.org/0000-0003-1071-4835
https://vegs3d.github.io/

2 S. Hwang and M. Kim et al.

3DGS Ours3DGS + LiDAR
Conventional
Test Camera

Train
Cameras

Extrapolated
Test Camera

Look
Right

Look
Down

(a) (b)

Fig. 1: (a) Illustration of Extrapolated View Synthesis (EVS) problem in urban scenes
reconstructed with forward-facing cameras. In contrast to conventional test cameras
similar to training camera poses, we evaluate view synthesis on cameras distant from
training camera distribution. (b) Qualitative comparison on EVS to baselines.

Meanwhile, some other methods raised specific solutions for urban scene re-
construction using NeRF-based methods. Most of these works either focus on
reconstructing scenes with dynamic objects [10,25,41] or improving modeling ca-
pacity [25, 38], as urban scenes tend to be in large-scale. Notably, Neural Scene
Graph [25] and MARS [41] propose to model urban scenes with a graph that com-
prises multiple neural implicit models for static and dynamic objects as nodes,
and 3D bounding boxes and their spatial relations as edges, followed by demon-
strating their methods on common driving scene dataset such as KITTI [12].
Block-NeRF [36] proposes to effectively model large-scale scene by dividing a
space into multiple blocks, each of which is represented with an independent
NeRF network.

However, none of the existing methods on urban scenes address the lim-
ited view distribution of training images commonly collected from cameras on
vehicles facing and moving forward. Since such characteristic is quite contrary
to requiring diversely posed images for accurate scene reconstruction [22], one
can easily insinuate that rendering from viewpoints far-distanced from train-
ing cameras may yield lower quality. In fact, existing works on urban scene
reconstruction [10, 25, 41] construct training and test viewpoints from a single
set of forward-facing posed images, which makes the test viewpoints to reside
in "interpolative" area defined by training cameras. Thus, evaluation on these
test cameras is irrelevant for view synthesis looking far on the left, right, and
downward with respect to the distribution of training cameras. Considering that
observation from such extrapolated views is essential for maximal use of re-
constructed scenes, we intend to focus our work on observing, analyzing, and
improving rendering quality from these views.

As shown in Figure 1, we formulate such problem as Extrapolated View Syn-
thesis (EVS), and demonstrate that rendering quality does degrade on EVS over
existing methods even when they render successfully on the interpolative test
cameras. To address the problem, we propose three methods to improve render-
ing quality on EVS by distilling prior knowledge from LiDAR, surface normal
estimator, and large-scale image diffusion model to our scene reconstructions.

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 3

Since many applications of view synthesis on urban scene require real-time
view synthesis [17], we stem our method from 3D Gaussian Splatting [18], a
point-based scene representation method that can yield high-quality rendering in
real time with ≈ 144 fps. We propose a method to model and initialize a dynamic
scene given point-clouds from LiDAR and off-the-shelf 3D object detectors in
order to guide the model with accurate geometry to improve EVS. During scene
reconstruction training with photometric loss, we also propose a method to distill
surface normal estimations from training images in order to shape and orient
covariances of 3D Gaussians suitable for EVS. We then propose a method to
fine-tune a large-scale image diffusion model to teach the visual characteristic of
the scene while keeping its generalization capability for unseen views, followed
by distilling that knowledge to EVS.

In summary, the contributions of this work are four-fold:

◦ First to tackle extrapolated view synthesis on urban scenes reconstructed
with forward-facing cameras to the best of our knowledge.

◦ Proposal of a dynamic urban scene modeling and reconstruction method in
3D Gaussians [18] using LiDAR.

◦ Proposal of a rendering and supervision method of covariances in 3D Gaus-
sians with surface normal priors.

◦ Proposal of a method to training and distilling knowledge from large-scale
diffusion model to unobserved views.

2 Related Works

2.1 Neural Scene Representation

Recent innovations driven by NeRF [22] and its variants [3–5] have enabled accu-
rate 3D reconstruction by supervising MLP with densely posed images via differ-
entiable volume rendering. While another line of works [11,23] have improved the
rendering speed of NeRFs, 3DGS [18], a unique form of point-based rendering,
brought another step of innovation in terms of high-fidelity real-time rendering
via point-based scene representation followed by its differential, rasterization-
based splatting techniques.

As real scenes tend to be dynamic, recent works [26, 29, 37] define a contin-
uous deformation field that maps an observation coordinate to canonical coor-
dinate where a template NeRF is defined. Notably, HyperNeRF [27] introduces
additional high-dimensional canonical space to expand NeRF’s capacity to cap-
ture topologically-varying motions. Meanwhile, scene reconstruction methods for
driving scenes model dynamic objects via bounding-box detections, with an as-
sumption that common objects in driveways such as cars are static within its
bounding-box coordinate. Specially, NSG [25] proposed dynamic scene graphs to
handle multiple dynamic objects in urban scenes, followed by MARS [41] with
instance-aware modeling of dynamic objects.

4 S. Hwang and M. Kim et al.

2.2 Scene Reconstruction with Constrained Viewpoints

Many recent works on few-shot NeRFs defines a problem where there are a
few sparsely posed yet well-distributed images for training. Some representative
works employs fully convolutional networks [46], vision transformers [24], nor-
malizing flow models [16], or diffusion models [42] as a prior to compensate the
lack of training images.

Works closest to our problem definition tackles extrapolated view synthesis,
where biased distribution of train cameras are heavily emphasized rather than
their number. RapNeRF [48] assumes training cameras to be densely posed in a
certain altitude, and test their model in different altitudes. However, the method
assume view-agnostic color for pseudo-guidance of unseen rays, which is inappro-
priate to capture outdoor scenes that often include reflective surfaces or varying
lighting conditions, whose images are highly view-dependent. Conversely, NeR-
FVS [44] enhances the approach by incorporating holistic priors, such as pseudo
depth maps and view coverage, derived from neural reconstructions. The method
is demonstrated for 3D indoor scenes, offering a possible solution for rendering
quality across diverse appearances. Meanwhile, we tackle a new extrapolated
view synthesis set-up in outdoor driving scenes where training cameras tend to
face and move forwards.

2.3 Scene Reconstruction with Priors

Recent works leverage geometry prior for accurate scene reconstruction. DS-
NeRF [8] harnesses free depth from SfM for neural rendering, while neural
RGB-D surface reconstruction [2] integrates depth from RGB-D sensors into the
NeRF framework for precise 3D models. Notably, MonoSDF [47] demonstrates
that depth and normal cues significantly improve reconstruction quality and op-
timization time. Meanwhile, many urban scene reconstruction methods leverage
LiDAR, as it is a common sensor for vehicles in driving scenes. S-NeRF [43] den-
sifies per-frame sparse LiDAR scans via a depth completion network, which is
used as a pseudo-guidance for depth renderings. Another LiDAR-based NeRF [7]
builds a LiDAR map for scene model. However, their proposed rendering method
yields sparse images, not to mention that dynamic objects such as cars that are
commonly present in urban scenes are not handled.

3 Method

Given a sequence of frames k ∈ {1 · · ·K} of dynamic urban scene images Ik

captured from forward-facing cameras on driving vehicles, and a sequence of
point-cloud set Pk collected from LiDAR sensor, our goal is to reconstruct a
driving scene that can yield photo-realistic renderings on views that are not
located in training cameras’ distribution. In this article, we will refer to render-
ings on such views as Extrapolated View Synthesis (EVS). We specify how the
camera poses for EVS are parameterized in Sec. 4.

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 5

Stable Diffusion-
LoRA

Covariance
Rasterization

Color
Rasterization

Color
Rasterization

View-augmented CamerasTrain Cameras

Dynamic Scene
Modeling (§3.1)

Surface Normal
Estimator

Training Images

Visual Knowledge Distillation from
Large-scale Diffusion Model (§3.3)

LiDAR + Object Detection

Camera

Covariance Guidance with
Surface Normal Prior (§3.2)

μ

Σ
σ

c

: Mean
: Density
: Covariance
: S.H Color

Fig. 2: Our dynamic scene model combines camera, LiDAR, and bounding box estima-
tions with 3D Gaussian Splatting [18] Aside from reconstruction loss Lc, we additionally
supervise Gaussian covariances with surface normal priors for improved extrapolated
view synthesis (EVS). We also make use of a large-scale diffusion model to distill its
knowledge directly to renderings of view-augmented cameras.

Our dynamic scene model integrates camera, LiDAR, and a standard bound-
ing box estimator, leveraging 3D Gaussian Splatting [18] to construct a static
and multiple instance-wise Gaussian models (Sec. 3.1). In addition, we learned
that optimizing Gaussian models with forward-facing cameras causes the co-
variance shapes of Gaussians to over-fit to a certain view, making the model
unsuitable for EVS. For that, we propose to guide covariance orientation and
shape using surface normal priors, introducing a new covariance renderer and
supervision method with surface normal maps extracted from training images
(Sec. 3.2). Finally, we propose a method for directly supervising extrapolated
views by distilling knowledge from a large-scale diffusion model, which we fine-
tune a subset of parameters to balance between scene-specific knowledge and
generalization to unseen views (Sec. 3.3). We summarize our method in Fig. 2.

3.1 Point-based Neural Rendering with LiDAR integration

Previous method [43] uses per-frame LiDAR scan as a sparse depth supervi-
sion. However, considering that a camera frame can also leverage scans from
another frames that are visible and within view frustum, we instead propose
to construct and utilize a dense point cloud map to distill concentrated scene
geometry knowledge to all training views.

Dynamic Scene Modeling and Initialization Our dynamic scene model M
comprises a static model Ms and multiple dynamic object models M i, where i

6 S. Hwang and M. Kim et al.

refers to an i-th instance-wise object. Following 3D Gaussian [18], each model is
represented with a set of Gaussian mean µ, a 3D covariance matrix Σ, density
σ, and color c. Covariance matrix is further parameterized by a diagonal scaling
matrix S and a rotation matrix R, so that

Σ = RSSTRT. (1)

We learned that instead of using sparse LiDAR scans as ground-truth label
for optimization, initializing Gaussian means µ with dense LiDAR maps achieves
reasonable balance from over-dependence on LiDAR prior, as LiDAR scans are
often prone to measurement noise [1].

Specifically, we separate per-frame LiDAR point clouds to static and instance-
wise dynamic points, after which we stack each of them across frames to construct
a dense static map and instance-wise point cloud objects. Formally, given Pk, we
first use an off-the-shelf 3D bounding box estimator E(·) to yield per-instance
and frame bounding box as

bik = E(Pk). (2)

Using bik, we cull dynamic points within the box, and aggregate them across the
frames to initialize means for each instance-wise dynamic Gaussian model, µi,
that are defined in canonical bounding-box coordinate as

µi = ⊕k∈KT k
i P

i
k, (3)

where P i
k are sub-set of Pk bounded by bik, T

k
i is transformation matrix from

LiDAR coordinate in k-th frame to canonical bounding-box coordinate of i-th
instance, and ⊕k∈K is concatenation across K frames. We can similarly collect
static scene points as

µs = ⊕k∈KT k
wP

s
k , (4)

where P s
k are sub-set of Pk that are bounded by none of bik, and T k

w is a trans-
formation matrix from LiDAR coordinate in k-th frame to world coordinate. In
addition, colors of all Gaussians are initialized by projecting Pk to camera planes
to assign colors.

Dynamic Scene Rendering and Training To render our dynamic scene,
dynamic Gaussian Models in box canonical space should be mapped to world
coordinate using known transformation from canonical box coordinate of i-th
instance to bounding box location in world coordinate at k-th frame, T i

k. That
is,

µi
k = T i

kµ
i, Ri

k = Ri
kR

i, (5)

where Ri
k is a rotation matrix of T i

k, and Ri is the rotation matrix that param-
eterizes a covariance matrix of Gaussian. Finally, all static and dynamic models
in world coordinate are jointly rasterized for rendering. Specifically, Gaussian
means and covariances are projected to a camera image plane to yield projected

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 7

2D mean and covariance µ and Σ using camera extrinsics Q, intrinsics K and
its jacobian J as

µ = KQµ, Σ = JQΣQTJT. (6)

µ, Σ and point density σ are then used to calculate the probability of rasterized
Gaussian to a pixel to calculate αj [18], followed by alpha blending of Gaussians
for each pixel as

c̃ =
∑
j∈N

cjαj

j−1∏
l=1

(1− αl), (7)

where cj is a view-dependent color calculated with spherical harmonics, and N
are indices of ordered points that overlaps the pixel. The scene renderings are
then optimized with training images using a photometric loss following [18] as

Lc = (1− λ)L1 + λLD-SSIM. (8)

Bounding Box Optimization In fact, noisy bounding box estimation can
cause a dynamic model to be transformed to inaccurate position in world coor-
dinate that does not correspond to its images projected to training cameras. As
so, we jointly optimize T i

k, a transformation from canonical box coordinate of
i-th instance to world coordinate at k-th frame, by employing an extra transfor-
mation with learnable matrix ∆T i

k defined for every instance and frame, so that
T i
k can be replaced with

T ′i
k = T i

k∆T i
k, (9)

where ∆T i
k can be further parameterized with a quaternion vector ∆q and a

translation vector ∆t to constrain its optimization within geometrically plausible
space. In addition, we regularize ∆T i

k to identity transformation using the loss
Lbox = ||∆q − qid.||2 + ||∆t||2, where qid. is an identity quaternion, so that T ′i

k

can reside around the initial estimation.

3.2 Covariance Guidance with Surface Normal Prior

The Lazy Covariance Optimization Problem In this section, we identify
and tackle the limitation of a 3D Gaussian model optimized with forward-facing
cameras. As illustrated in Fig. 3 (a), the shape and orientation of learned co-
variances tend to over-fit to a certain viewing angle, which we hypothesize that
the covariance is trained to cover the the frustum of a training pixel with a
minimal optimization effort. As a result, these covariances are prone to produce
unwanted cavity on an underlying scene surface, which is revealed when viewed
from unobserved angles.

8 S. Hwang and M. Kim et al.

Axis1

Axis2 Axis3

Normal

colormap

min

max

 θ

φ

(b)(a)

 only

Missing Hole

Covariance w/
Covariance w/ Covariance rotation

axes & scale

s

Normal Guidance

Covariance w/o Normal Prior

Fig. 3: (a) Working mechanism of Lcov = Laxis+Lscale. Laxis aligns covariance axes to a
surface normal vector, and Lscale minimizes the scale along the covariance axis aligned
with surface normal, all of which prevents the Gaussian covariance from minimally
satisfying a pixel view frustum, which causes cavity when viewed from another angle.
(b) Visualizing Laxis for different alignment between normal and covariances. Laxis is
minimized when an axis aligns with the normal. See supplements for detailed derivation.

Our key idea is to guide the orientation and shape of covariances to make
them behave like the underlying scene surface. In fact, unlike MLP-based rep-
resentations [47] that can calculate scene surface normal by taking negative
gradient of density field with respect to a position via Autograd [28] library,
our model cannot render a normal map due to the nature of a discrete repre-
sentation of Gaussian models. Instead, we suggest a novel covariance rendering
technique to approximate scene surface normal from rendered covariance map.
Then, we guide the map with a surface normal estimated from training images
in two steps: First, we align the orientation of covariances to surface normals
using Laxis, followed by flattening the covariance map toward the surface with
Lscale. The intuition behind this optimization goal is illustrated in Fig. 3.

Covariance Axes Loss We first propose a method to render covariances axes
expressed in quaternion. As alpha-blending based on linear composition is not
suitable for quaternion, we re-design Eq. (7) to render the covariance orientation
map q̃ as

q̃ =
∏
j∈N

S
(
qI ,qj , wj

)
, wj = αj

j−1∏
l=1

(1− αl) (10)

where qI is an identity quaternion, S(qI ,qj , wj) is a slerp function that spher-
ically weights the orientation of j-th covariance qj with respect to qI by wj .
Weighted covariance orientations are then multiplied for cumulative application
of rotations [19]. The rendered quaternion vector map is reformulated into a
rotation matrix map and transformed into a training camera coordinate, which
we denote as a covariance orientation map in matrix form Q̃.

Q̃ is then supervised with surface normal estimated from training images
using an off-the-shelf normal prediction network G. Formally, our covariance
axes loss is defined as,

Laxis =
∑

i∈{0,1,2}

|Q̃[:, i] ·G(I)|/3, (11)

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 9

where Q̃[:, i] represents the i-th axis of pixel-wise rendered covariance orientation
matrix. As illustrated in Fig. 3 (b), Laxis is minimized when any of the three
covariance axes aligns with the normal vector. We make detailed derivation of
this loss in supplements.

Covariance Scale Loss Axis alignment itself, however, cannot prevent the lazy
covariance optimization problem, as the scale of the axis that aligns with the
normal can still increase to cover the pixel view-frustum, which can still cause
the cavity problem. As so, scale of the axis aligned to normal must be minimized
to finally induce the covariance to mimic an underlying surface.

Specifically, we can render a covariance scale map S̃ similar to Eq. (7), and
minimize scales proportional to the cosine similarity of its axis with a normal
vector. As a result, scale for normal-aligned axis will be minimized, while the
remaining two scales can be trained more freely to satisfy the reconstruction loss
Lc. Formally, we establish the scale loss as

Lscale =
∑

i∈{0,1,2}

∣∣∣S̃[i](Q̃[:, i] ·G(I)
)∣∣∣/3, (12)

where S̃[i] is the scale of i-th axis of S̃. Also, we do not back-propagate to Q̃ in
Lscale to clearly disentangle the working mechanism of Laxis and Lscale. Finally,
we define our covariance guidance loss as Lcov = λaxisLaxis + (1− λaxis)Lscale.

3.3 Visual Knowledge Distillation from Large-scale Diffusion Model

Denoising Score Matching for Visual Knowledge Distillation Apart
from leveraging scene priors such as LiDAR or surface normals during optimiza-
tion from training cameras, we augment cameras to EVS in order to perform
direct guidance to unseen views. However, as training data is not provided for
EVS, we instead make use of an image diffusion model in order to distill its
knowledge on visual sanity.

We leverage from [14, 39] that noise predicted from a diffusion model sθ is
proportional to the log-gradient of prior distribution, or denoising score matching
given noise that is small enough [34]. That is, given xτ =

√
ᾱτx + (1 − ᾱτ)ϵ,

where ϵ ∼ N (0, 1), timestep τ , pre-defined noise schedule ᾱτ , and an image x,

sθ(xτ , τ) ≈ −∇xlogp(x), (13)

Thus, optimizing xτ to yield smaller score pushes x to our prior distribution p(·).
Similar to Perturb-and-Average Scoring in Score Jacobian Chaining (SJC) [40]
and DiffusioNeRF [42], we design our loss function using Eq.(13) as

∇MLscore = −sθ(Îτ , τ), (14)

where Îτ =
√
ᾱτ Î + (1− ᾱτ)ϵ and Î is a rendering from our model M on EVS.

10 S. Hwang and M. Kim et al.

Large-scale Diffusion Model with Scene-Specific Adaptation Since the
visual distribution of EVS is designed to resemble that of diffusion model as
stated in Eq. (13), it is important for our diffusion model to have scene-specific
visual understanding, yet can generalize to renderings from unseen views.

Meanwhile, recent works such as DiffusioNeRF [42] trains DDPM [14] with
Hypersim [30], a synthetic indoor image dataset, in order to design a critic
for visual sanity. However, guidance is conducted via 48x48 patches to prevent
from over-fitting to indoor training images. As a result, the model does not
strictly have scene-specific understanding, because the data used for training is
not visually identical to our scene, not to mention that patch-wise supervision
may not be enough to assess scene-specific visual sanity of a rendering as a
whole. Meanwhile, GA-NeRF [31] proposes GAN loss between training images
and renderings from augmented views. However, adversarial training mechanism
is unsuitable to our scenario due to the large difference of camera distribution
between training and EVS views, making discriminator hard to be deceived. As
so, adversarial training may be unsuitable for guiding unseen views.

To satisfy both properties, we propose to fine-tune a large-scale diffusion
model such as Stable Diffusion [33] using LoRA [15], a method commonly used
in Large Language Models to fine-tune the low-rank residuals of projection layers
in cross-attention. By doing so, our score matching model achieves generalization
capability for unseen views by leveraging knowledge from large pretrained model,
and scene-specific reconstruction capability by fine-tuning part of the model
parameters using our training data. Formally, we use the following loss to fine-
tune our diffusion model as

LLoRA = Eτ,p,ϵ[||ϵ− sθ(Iτ , p)||22], (15)

where p is a text prompt appropriately chosen for the scene, and Iτ =
√
ᾱτ I +

(1− ᾱτ)ϵ are noised training images.

Training Strategy Prior to scene reconstruction, we first fine-tune our diffu-
sion model sθ using Eq. (15) using our training images. Then, we freeze sθ and
optimize our scene model M using the final loss formally stated as

∇L = λc∇Lc + λbox∇Lbox + λcov∇Lcov + λscore∇Lscore. (16)

4 Experiments

Dataset We conduct our experiments on KITTI-360 [20] and KITTI [12] Dataset.
As KITTI-360 contains 9 voluminous sequences where each sequence contains
up to 15000 frames, we divide a sequence into segments of approximately 250
frames. We randomly select 16 segments with dynamic objects and another 16
segments without dynamic objects, which is for fair comparisons on EVS with
baselines that do not necessarily handle dynamic objects.

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 11

OursBlockNeRF++MARS 3DGS Reference

E
V

S-
D

E
V

S-
L

R
Te

st
 C

am
.

Fig. 4: Qualitative comparison on KITTI-360 [20] for extrapolated view synthesis.
EVS-D and EVS-LR refers to extrapolated views facing downwards and left/right,
respectively. Test Cam. refers to the conventional test camera sampled from a set of
forward-facing cameras. We also report training images for reference that maximally
covers the view space of EVS from another location for comparison. Ours outperforms
the baselines in terms of geometry and visual sanity.

Evaluation Cameras We first select every 8th frame as conventional test cam-
eras. Then, we construct a EVS camera set that look left and right (EVS-LR)
via rotating the test cameras by ±60◦ around Z-axis of world coordinate point-
ing upward, and another set that look downward (EVS-D) via rotating the test
cameras by 10◦ around the x-axis of camera coordinate pointing to the right
and translating camera upward in world coordinate by 1.0 in world unit. For
EVS-LR, the cameras often cover under-reconstructed spaces on the side of the
frame. This nature comes from the forward-facing camera movement, which is
quite common in urban scenes. We elaborate more on this phenomenon in sup-
plementary material. Since the renderings from unobserved space disturbs the
quantitative results, we remove half of the image plane of EVS-LR camera farther
away from the direction of train camera trajectory for experimental comparisons,
and resize the cameras for EVS-D and conventional test camera to have the same
image plane size with EVS-LR while keeping the same principal point.

Baselines We made our own baseline using BlockNeRF [36], a state-of-the-
art large urban scene reconstruction method, with additional supervision with

12 S. Hwang and M. Kim et al.

OursMARS 3DGS+ Reference

Fig. 5: Qualitative comparison on KITTI [12] dataset from conventional test camera
(top) and EVS-D (bottom).

FID↓ KID↓ PSNR↑ SSIM↑ LPIPS↓ PSNR∗↑ FPS↑

Mip-NeRF 360 [4] 181.5 0.1431 21.59 0.739 0.203 - 0.08
MARS [41] 131.1 0.0617 23.13 0.814 0.125 21.98 0.17

BlockNeRF++ [8,36,47] 245.1 0.1914 21.03 0.723 0.223 - 0.13
3DGS [18] 211.8 0.1382 21.68 0.772 0.192 - 121
3DGS+ 126.3 0.0565 23.76 0.814 0.106 22.48 108

VEGS (ours) 124.4 0.0561 23.71 0.812 0.106 22.44 108

Table 1: Quantitative results on KITTI-360. FID [13] and KID [6] are measured be-
tween EVS and training images. PSNR, SSIM and LPIPS are measured from conven-
tional test cameras on static scenes where ground-truth images are available. PSNR∗

measures PSNR from conventional test cameras on dynamic object reconstructions.

LiDAR using methods proposed by S-NeRF [43] and normal loss proposed by
MonoSDF [47], which we will denote as BlockNeRF++ in this article. We also
compare our works with existing urban scene reconstruction methods such and
MARS [41] that extends NSG [25] by modeling static scene with NeRF with
additional depth prior supervision, as well as MipNeRF 360 [4]. We also compare
with 3DGS [18] to compare relative performance between the state-of-the art
point-based rendering method, and 3DGS+ that includes our dynamic scene
modeling, LiDAR initialization and box optimization method to make 3DGS
suitable for dynamic scenes.

5 Results
Comparison to Baselines We report qualitative results of our method and
baselines on KITTI-360 in Fig. 4. Our method outperforms the baselines in both
EVS-LR and EVS-D. Note that we additionally report renderings on conven-
tional test cameras, which shows that our method is on-par with MARS and bet-
ter than 3DGS and BlockNeRF++. However, comparison with MARS indicates
that reconstruction quality on the conventional test cameras does not necessarily
correspond to the quality on EVS. Similar analysis can be done on qualitative
results of KITTI in Fig. 5. Here, we built and compared with 3DGS+, where we

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 13

Ours w/o Ours w/ Reference
(a)

Ours w/o ReferenceOurs w/
(b)

Fig. 6: Qualitative ablation results on (a) Lcov and (b) Lscore on EVS. Lcov effectively
guides the Gaussian covariances to faithfully cover the scene surface, yielding noticeably
less cavity and better geometry. Lscore effectively improves broken textures, geometry,
and removes floating artifacts.

included our dynamic scene modeling method with LiDAR and bounding-box
detector, since SfM cannot initialize dynamic object points.

We report quantitative results of our method with baselines in Tab. 1. FID
[13] and KID [6] are measured with respect to training images to measure the
reconstruction qualities on EVS renderings. Even though small FID/KID cannot
be expected due to the large difference of camera distribution between training

14 S. Hwang and M. Kim et al.

Reference Object Removal RotationTranslation

Fig. 7: Scene editing results. Since our method models dynamic objects on its own
canonical space separated from world coordinate, the reconstructed object can be re-
located or removed by manual adjustments.

images and EVS renderings, we use them as an approximation for visual sanity
and closeness to the scene. We also measure PSNR, SSIM and LPIPS [49] to
evaluate renderings on the conventional test cameras. Ours outperforms Block-
NeRF++ and 3DGS in all metrices. However, ours outperform MARS in PSNR
and LPIPS, while MARS performs slightly better in SSIM, indicating that per-
formance on conventional test cameras are on par. However, ours out-performs
MARS on FID and KID measured from EVS-D and EVS-LR, which aligns with
the analysis from the qualitative results in Fig. 4. We also measure PSNR for
dynamic objects only, which we denote as PSNR* in Tab. 1, and compare it with
MARS. Ours yield slightly better performance in dynamic object reconstruction.

Ablations We report qualitative ablation results on Lcov and Lscore in Fig. 6a
and Fig. 6b, respectively. As can be seen, the lazy covariance optimization prob-
lem is effectively ameliorated with Lcov by removing cavities on surfaces such
as floor, wall, and car hood. In addition, Lscore brings noticeable improvement
in visual quality such as refining broken texture, geometry, and floater that we
conjecture to be originated from Gaussians of ill-posed space such as sky. We
report quantitative ablation results in supplements.

Scene Editing In order to demonstrate the effectiveness of our dynamic scene
modeling, we conducted scene editing experiments such as removing, translating
or rotating the reconstructed dynamic object. We report our editing results
in Fig. 7. The result indicates that the dynamic object is well-modeled and
separated from the static background model.

6 Conclusion

This work introduces VEGS, a urban scene reconstruction method for improved
Extrapolated View Synthesis (EVS) given training images from forward-facing
cameras. We introduced techniques to modeling a dynamic scene in 3D Gaus-
sians and integrating dense LiDAR map to the model. We also proposed methods
to render and supervise covariances of the Gaussians with surface normal esti-
mations to orient and shape Gaussian covariances suitable for EVS, followed by
distilling knowledge from a fine-tuned image diffusion models for better visual
sanity. Our comparative studies demonstrated the efficacy of our approaches in
addressing the EVS problem.

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 15

Supplementary Material
This supplementary material provides additional results and detailed descrip-
tions of the experimental methodologies.

G Ablation Study

G.1 Ablation Study of Normal and Diffusion Priors

Normal
Prior

Diffusion
Prior KID↓ FID↓

✗ ✗ 0.0565 126.3
✓ ✗ 0.0564 124.6
✓ ✓ 0.0561 124.4

Table 2: Ablation study of our pro-
posed method. Metrics are evaluated
on the extrapolated views from the
KITTI-360 dataset. Best results are
highlighted in bold.

Tab. 3 presents an ablation study of our
proposed method applied to the extrap-
olated view synthesis on the KITTI-360
test cameras. The baseline utilizes LiDAR
points as the initial mean values for co-
variance estimation, excluding the use of
surface normal and diffusion priors. The
integration of surface normal and diffu-
sion priors has consistently improved over-
all performance, as evidenced by improve-
ments in both KID and FID metrics. The
metrics are computed as averages across
the entire dataset sequence.

G.2 Ablation Study of Normal Prior Composing Losses

Here, we demonstrate an ablation study of losses composing covariance guidance
loss in Sec. 3.2. Tab. 3 shows the ablation study results on KITTI-360. We
ablated on EVS-D as Lazy Covariance Optimization (LCO) is more clearly
observed from grounds. Metrics evaluated on the EVS-D from the KITTI-360
dataset demonstrate clear improvements when all the losses are utilized.

✗ Laxis ✗ Lscale ✓ Laxis ✗ Lscale ✗ Laxis ✓ Lscale ✓ Laxis ✓ Lscale

FID ↓ / KID ↓ 123.28 / 0.05542 122.56 / 0.05537 122.80 / 0.05527 121.60 / 0.05521
Table 3: Ablation study on Laxis and Lscale.

H Minima Analysis of Covariance Axes Loss

In this section, we show that the proposed covariance axes loss defined in Eq. (11)
is minimized when one of the covariance axes aligns with the normal axis. We
denote the polar and azimuthal angles of the normal vector in covariance axis
coordinate by θ and ϕ, respectively. Accordingly, Eq. (11) can be reformulated
as:

Laxis = (| cos θ|+ | sin θ sinϕ|+ | sin θ cosϕ|) /3. (17)

16 S. Hwang and M. Kim et al.

Taking partial derivatives of Laxis yields:

∇ϕLaxis = sin θ (± cosϕ∓ sinϕ) /3,

∇θLaxis = (∓ sin θ ± cos θ (sinϕ+ cosϕ)) /3.
(18)

Since Laxis yields local minima or maxima where ∇Laxis(θ, ϕ) = 0, solving the
equation yields:

∇ϕLaxis = 0 ⇒ θ = 0 or ϕ =
π

4
,

∇θLaxis|ϕ=π
4
= 0 ⇒ θ = arctan

√
2.

(19)

This analysis suggests that the global extrema are located at θ = 0 or (θ, ϕ) =(
arctan

√
2, π

4

)
. Substituting θ = 0 to Laxis yields Laxis ≈ 0.333, and (θ, ϕ) =(

arctan
√
2, π

4

)
yields Laxis ≈ 0.577. Thus, we conclude that the Laxis reaches

its minimum when θ = 0, indicating perfect alignment between the normal axis
and one of the covariance axes when the loss is minimized. Once θ reaches zero,
the ϕ value becomes irrelevant, as the axis will align with the normal vector for
all ϕ.

I Optimal Solution of Covariance Scale Loss

In this section, we aim to substantiate that the covariance scale loss Lscale ef-
fectively minimizes the covariance scale along the covariance axis that is most
closely aligned with the normal axis. By defining the covariance scale for each
axis as si, and adhering to the angle notation in Eq. (17), we can reformulate
the covariance scale loss function Eq. (12) as follows:

Lscore = (s1| cos θ|+ s2| sin θ sinϕ|+ s3| sin θ cosϕ|) /3. (20)

In this formula, θ and ϕ are detached from the computational graph, indicating
that they are only influenced by the covariance axes loss Laxis. Given that Laxis is
designed to steer θ towards zero, we can anticipate that Lscale will converge to the
value of s1 when the covariance axes loss functions as intended. It is important
to note that s1 represents the scale along the covariance axis that aligns with the
normal vector. Therefore, minimizing s1 is equivalent to flattening the covariance
ellipse along the normal axis, thereby aligning the covariance more closely with
the surface and mitigating the cavity issue. To prioritize the influence of the
covariance axes loss over the covariance scale loss, we assign 0.8 to λaxis in our
experiments.

J Implementation Details

J.1 Training Details

Our model is trained with 30,000 iterations, λscore = 10−11, λbox = 0.001, λc = 1,
and λaxis = 0.8. Diffusion guidance is performed during the last 5,000 iterations

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 17

w/o fine-tuning

w/ fine-tuning

Training Images
Fig. 8: Comparing samples generated with (top) Stable Diffusion v2.1 [32], (middle)
our fine-tuned model, and (bottom) training images of the scene. Fine-tuning model
with LoRA [15] increases the scene-specific knowledge by large margin. For all sampling,
we used the text "a photography of a suburban street".

in order to start guiding after Lc almost converges. To train VEGS with Lscore
loss, we use 512×512 image, as the diffusion model is trained and best perform
in 512×512 image. Since the height of the KITTI-360 and KITTI dataset images
are smaller than 512, we increase the image plane size to make its height 512, and
random cropped by 512×512 for diffusion score loss. Since our diffusion model
assumes the total number of denoising step to be T = 1000, we defined τ = 25
to make it small enough to satisfy the assumption for Eq. (13).

All experiments are conducted on RTX 3090 except for BlockNeRF++, which
is trained on A6000 to handle VRAM of ≈ 48GB. We use omnidata [9] for
monocular normal estimation.

J.2 Covariance Axis and Scale Initialization

To ease the optimization process, we initialize the covariance axes and scales
to align with our objective at initialization. For the initial covariance axes, we

18 S. Hwang and M. Kim et al.

�������������

������������������

������������������

���������������
��	

����������
��������

����������
��������

����������
��������

Fig. 9: Illustration of a case where further half of EVS-LR observing occluded space.

FID ↓ KID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR* ↑

MARS 209.61 0.167 24.11 0.822 0.119 21.86
BlockNeRF++ 394.71 0.342 23.56 0.789 0.172 –

3DGS 209.41 0.175 23.72 0.802 0.138 –
3DGS+ 182.87 0.207 24.82 0.847 0.115 23.06
VEGS 167.38 0.090 24.77 0.845 0.113 23.01

Table 4: Quant. comparison on KITTI [12]

project each point in LiDAR map to cameras to assign normal predicted from
images to the point. Since there are multiple normal vectors assigned to a point,
we find a normal vector that is most likely to represent the normal of the point.
To do so, we first construct intra-normal similarity matrix, followed by calculat-
ing the sum of similarity of a normal with respect to the other normals. Then,
we select the normal that yields the highest similarity sum. Using the normal
vector, we then establish the initial covariance axes by first defining one axis
equal to the normal vector, another axis that is orthonormal to the first axis,
and the last axis by applying Gram-Schmidt process to the first two axes, all of
which consist a set of three orthonormal axes. As for initial covariance scales, we
assign 1e-5, 1e-1, 1e-1 to each axis, respectively. We designate the smallest scale
1e-5 to the axis that corresponds to the normal vector.

J.3 Fine-tuning Diffusion Model

For large-scale diffusion model, we use Stable Diffusion v2.1 [32]. As mentioned
in our main paper, we fine-tuned the model using LoRA [15] over 300 iterations,
adopting a learning rate of 1 × 10−4 and a cosine learning schedule. For the
text prompt p, we used "a photography of a suburban street" for all experiments.
Training images are randomly selected within the scene frame segment of inter-
est. To prepare training dataset, we resized training images to have height of

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 19

512 using bilinear interpolation. The training images are then copped at random
positions by 512× 512.

J.4 Camera Resolution for Evaluation

As illustrated in Fig. 9, the side region of EVS-LR plane inevitably has less
observation due to the forward-facing nature of training cameras. Moreover, for
the side regions that contain occluders, this lack of observation often leads to
blank or noisy renderings. This phenomenon arises regardless of recent method-
ologies. For this reason, to evaluate the regions that are properly reconstructed
by multiple observations only, we crop the center of the frame for evaluation.

K Quantitative Results for KITTI

We report the following experimental results on KITTI [12] in Tab. 4, from which
we can yield similar conclusion from KITTI-360.

L Additional Analysis

L.1 Covariance Visualization

In Fig. 10, we present a visualization of the covariances to illustrate the impact
of the covariance axes loss and the covariance scale loss. The figure demonstrates
how our method not only aligns the covariance to the implicit surface normal but
also effectively flattens it to encompass the surface comprehensively. This process
enables the cavity-free extrapolated view synthesis by ensuring a seamless surface
representation. We also report the shortest covariance axis and depth renderings
in Fig. 11 to visualize pseudo-normal and presence of cavity.

L.2 Effect of Stable Diffusion Fine-tuning

In order to verify that fine-tuning the model does represent the visual domain
of the scene of interest, we generated samples from our model fine-tuned with
LoRA, and compared with samples generated with the original pretrained model.
We report the results in Fig. 8, which shows that samples generated with fine-
tuned model look more visually close to the training images.

20 S. Hwang and M. Kim et al.

������������������������ �����������������
	�������
��

��
���

�
�

��
�

�����	������

�����	�����

Fig. 10: Visualization of reconstructed covariance. The baseline method employs Li-
DAR points as the initial mean values for covariance estimation, omitting surface nor-
mal and diffusion priors. Our method ensures the alignment of one covariance axis
with the surface normal, while simultaneously minimizing the covariance scale along
this normal vector. Such alignment and scaling facilitates cavity-free extrapolated view
synthesis.

Shortest Axis Rendernig from
Conventional Test Cam.

RGB Renderings from
Conventional Test Cam.

Depth Rendering from
EVS-D Cam.

3D
G

S+
 (w

/ L
iD

A
R

)
O

ur
s

Fig. 11: (Left) Renderings from a conventional test camera. (Center) Visualizing
shortest axis of rendered covariance orientation map. (Right) Depth map rendered
from EVS-D.

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 21

References

1. Adams, M.D.: Lidar design, use, and calibration concepts for correct environmental
detection. IEEE Transactions on Robotics and Automation 16(6), 753–761 (2000)

2. Azinović, D., Martin-Brualla, R., Goldman, D.B., Nießner, M., Thies, J.: Neural
rgb-d surface reconstruction. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 6290–6301 (June 2022)

3. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 5855–5864 (2021)

4. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-
nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5470–
5479 (2022)

5. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-nerf:
Anti-aliased grid-based neural radiance fields. arXiv preprint arXiv:2304.06706
(2023)

6. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd gans.
arXiv preprint arXiv:1801.01401 (2018)

7. Chang, M., Sharma, A., Kaess, M., Lucey, S.: Neural radiance field with lidar maps.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 17914–17923 (2023)

8. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised NeRF: Fewer views
and faster training for free. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (June 2022)

9. Eftekhar, A., Sax, A., Malik, J., Zamir, A.: Omnidata: A scalable pipeline for
making multi-task mid-level vision datasets from 3d scans. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 10786–10796 (2021)

10. Fu, X., Zhang, S., Chen, T., Lu, Y., Zhu, L., Zhou, X., Geiger, A., Liao, Y.:
Panoptic nerf: 3d-to-2d label transfer for panoptic urban scene segmentation. In:
2022 International Conference on 3D Vision (3DV). pp. 1–11. IEEE (2022)

11. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-
fidelity neural rendering at 200fps. arXiv preprint arXiv:2103.10380 (2021)

12. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2012)

13. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems 30 (2017)

14. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020)

15. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L.,
Chen, W.: Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685 (2021)

16. Jain, A., Tancik, M., Abbeel, P.: Putting nerf on a diet: Semantically consistent
few-shot view synthesis. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. pp. 5885–5894 (2021)

17. Kaur, P., Taghavi, S., Tian, Z., Shi, W.: A survey on simulators for testing self-
driving cars. In: 2021 Fourth International Conference on Connected and Au-
tonomous Driving (MetroCAD). pp. 62–70. IEEE (2021)

22 S. Hwang and M. Kim et al.

18. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (2023)

19. Kuipers, J.B.: Quaternions and rotation sequences: a primer with applications to
orbits, aerospace, and virtual reality. Princeton university press (1999)

20. Liao, Y., Xie, J., Geiger, A.: KITTI-360: A novel dataset and benchmarks for
urban scene understanding in 2d and 3d. Pattern Analysis and Machine Intelligence
(PAMI) (2022)

21. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duck-
worth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo col-
lections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 7210–7219 (2021)

22. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020)

23. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with
a multiresolution hash encoding. ACM Transactions on Graphics (ToG) 41(4), 1–
15 (2022)

24. Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.:
Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 5480–5490 (2022)

25. Ost, J., Mannan, F., Thuerey, N., Knodt, J., Heide, F.: Neural scene graphs for
dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 2856–2865 (2021)

26. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable neural radiance fields. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5865–5874 (2021)

27. Park, K., Sinha, U., Hedman, P., Barron, J.T., Bouaziz, S., Goldman, D.B., Martin-
Brualla, R., Seitz, S.M.: Hypernerf: A higher-dimensional representation for topo-
logically varying neural radiance fields. arXiv preprint arXiv:2106.13228 (2021)

28. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

29. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural ra-
diance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 10318–10327 (2021)

30. Roberts, M., Ramapuram, J., Ranjan, A., Kumar, A., Bautista, M.A., Paczan,
N., Webb, R., Susskind, J.M.: Hypersim: A photorealistic synthetic dataset for
holistic indoor scene understanding. In: International Conference on Computer
Vision (ICCV) 2021 (2021)

31. Roessle, B., Müller, N., Porzi, L., Bulò, S.R., Kontschieder, P., Nießner, M.: Ganerf:
Leveraging discriminators to optimize neural radiance fields. ACM Trans. Graph.
42(6) (nov 2023). https://doi.org/10.1145/3618402, https://doi.org/10.
1145/3618402

32. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 10684–
10695 (June 2022)

33. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models (2021)

34. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems 32 (2019)

https://doi.org/10.1145/3618402
https://doi.org/10.1145/3618402
https://doi.org/10.1145/3618402
https://doi.org/10.1145/3618402

View Extrapolation of Urban Scenes in 3D Gaussian Splatting 23

35. Sun, J., Chen, X., Wang, Q., Li, Z., Averbuch-Elor, H., Zhou, X., Snavely, N.:
Neural 3D reconstruction in the wild. In: SIGGRAPH Conference Proceedings
(2022)

36. Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Bar-
ron, J.T., Kretzschmar, H.: Block-nerf: Scalable large scene neural view synthesis.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 8248–8258 (2022)

37. Tretschk, E., Tewari, A., Golyanik, V., Zollhöfer, M., Lassner, C., Theobalt, C.:
Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dy-
namic scene from monocular video. In: IEEE International Conference on Com-
puter Vision (ICCV). IEEE (2021)

38. Turki, H., Ramanan, D., Satyanarayanan, M.: Mega-nerf: Scalable construction of
large-scale nerfs for virtual fly-throughs. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 12922–12931
(June 2022)

39. Vincent, P.: A connection between score matching and denoising autoencoders.
Neural computation 23(7), 1661–1674 (2011)

40. Wang, H., Du, X., Li, J., Yeh, R.A., Shakhnarovich, G.: Score jacobian chaining:
Lifting pretrained 2d diffusion models for 3d generation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12619–
12629 (2023)

41. Wu, Z., Liu, T., Luo, L., Zhong, Z., Chen, J., Xiao, H., Hou, C., Lou, H., Chen,
Y., Yang, R., et al.: Mars: An instance-aware, modular and realistic simulator for
autonomous driving. arXiv preprint arXiv:2307.15058 (2023)

42. Wynn, J., Turmukhambetov, D.: Diffusionerf: Regularizing neural radiance fields
with denoising diffusion models. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 4180–4189 (2023)

43. Xie, Z., Zhang, J., Li, W., Zhang, F., Zhang, L.: S-nerf: Neural radiance fields for
street views. In: The Eleventh International Conference on Learning Representa-
tions (2022)

44. Yang, C., Li, P., Zhou, Z., Yuan, S., Liu, B., Yang, X., Qiu, W., Shen, W.: Nerfvs:
Neural radiance fields for free view synthesis via geometry scaffolds (2023)

45. Yang, J., Pavone, M., Wang, Y.: Freenerf: Improving few-shot neural rendering
with free frequency regularization. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 8254–8263 (2023)

46. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: Neural radiance fields from
one or few images. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4578–4587 (2021)

47. Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: Monosdf: Exploring monoc-
ular geometric cues for neural implicit surface reconstruction. Advances in Neural
Information Processing Systems (NeurIPS) (2022)

48. Zhang, J., Zhang, Y., Fu, H., Zhou, X., Cai, B., Huang, J., Jia, R., Zhao, B., Tang,
X.: Ray priors through reprojection: Improving neural radiance fields for novel
view extrapolation (2022)

49. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)

	VEGS: View Extrapolation of Urban Scenes in 3D Gaussian Splatting using Learned Priors

